Глава 4. Восходящий синтаксический анализ

4.2. Грамматики простого предшествования

Одним из наиболее легких подходов к решению проблемы поиска и своевременной свертки основы является реализация восходящего синтаксического анализа для небольшого класса КС-грамматик, называемых *грамматиками простого предшествования*. Технология синтаксического анализа для таких грамматик предполагает введение специальных бинарных отношений между каждой парой символов грамматики (как терминалов, так и нетерминалов). Эти отношения управляют выбором основ сентенциальных форм для последующей их свертки.

Основным недостатком этого метода является применимость его лишь в узком классе грамматик простого предшествования.

4.2.1. Отношения предшествования

Пусть $G = (V_T, V_N, P, S)$ — контекстно-свободная грамматика, а строка $\alpha XY\beta$ — правосторонняя сентенциальная форма, где $\alpha, \beta \in (V_T \cup V_N)^*, X, Y \in V_T \cup V_N$. В некоторый момент (на одном из этапов процесса последовательных сверток сентенциальной формы) возникает одна из следующих возможных ситуаций:

- 1. Y самый левый символ (*заголовок*) основы сентенциальной формы, а X не входит в основу. В этом случае говорят, что символ Y предшествует символу X (поскольку символ Y должен быть свернут раньше символа X), и записывают в виде X < Y.
- 2. X и Y входят в одну и ту же основу. В этом случае говорят, что X и Y имеют равное предшествование (поскольку сворачиваются одновременно), и записывают в виде $X \doteq Y$.
- 3. X последний символ (*окончание*) основы, а Y не входит в основу. В этом случае говорят, что символ X *предшествует* символу Y (поскольку символ X должен быть свернут раньше символа Y), и записывают в виде X > Y.

Отношения <, \doteq , > называются *отношениями предшествования*. Следует заметить, что, хотя эти отношения похожи на арифметические отношения <, =, >, они имеют совершенно иные свойства. В частности, они не обладают свойствами коммутативности и ассоциативности. Из отношения X>Y, не следует, что существует отношение Y<X. Эти отношения не являются симметричными, из отношения $X \doteq Y$ не следует $Y \doteq X$. Для одной и той же грамматики может быть так, что X<Y и X>Y, или для некоторых пар символов не выполняется ни одно из отношений предшествования.

Формально эти отношения для символов $X, Y \in V_T \cup V_N$ грамматики определяются следующим образом:

- 1. $X \doteq Y$, если существует некоторая продукция $A \to \alpha XY\beta$, $A \in V_N$, α , $\beta \in (V_T \cup V_N)^*$. Это значит, что в правосторонней сентенциальной форме X и Y входят в одну и ту же основу.
- $2. \ X < Y$, если существует некоторая продукция $A \to \alpha X B \beta$, $A, B \in V_N$, $\alpha, \beta \in (V_T \cup V_N)^*$, такая, что $B \stackrel{\scriptscriptstyle +}{\Rightarrow} Y \delta$, $\delta \in (V_T \cup V_N)^*$. Это значит, что в правосторонней сентенциальной форме основа начинается с символа Y(Y) является заголовком основы).
- $3. \ X \! > \! Y$, если существует некоторая продукция $A \to \alpha B Z \beta$, $A, B \in V_N, Z \in V_T \cup V_N$, $\alpha, \beta \in (V_T \cup V_N)^*$, такая, что $B \stackrel{\pm}{\Longrightarrow} \gamma X$ и $Z \stackrel{*}{\Longrightarrow} Y \delta$, $\gamma, \delta \in (V_T \cup V_N)^*$. Это значит, что в правосторонней сентенциальной форме основа завершается символом X (X является окончанием основы). Следует заметить, что в правосторонней сентенциальной форме справа от основы может быть только терминальная строка. Поэтому в данном случае символ Y может быть только терминалом, т. е. $Y \in V_T$, и отношение > определяется на множестве $(V_T \cup V_N) \times V_T$. Заметим также, что если $Y \delta$ выводится из Z за нуль шагов, то Z = Y.

Контекстно-свободная грамматика $G = (V_T, V_N, P, S)$ называется грамматикой простого предшествования, если:

- 1) не содержит є-продукций;
- 2) никакие две продукции грамматики не имеют совпадающих правых частей (грамматики, в которых нет двух продукций с одинаковыми правыми частями, называются обратимыми);
- 3) любые два символа, составляющие элемент множества $(V_T \cup V_N) \times (V_T \cup V_N)$, связаны одним и тем же отношением предшествования.

Отношения предшествования обычно записывают в виде *матрицы предшествования*, строки и столбцы которой соответствуют символам грамматики. На пересечении i-й строки и j-го столбца записывается отношение предшествования между соответствующими символами грамматики. Элементами матрицы являются знаки <, $\dot{=}$, > или «пусто». Последний случай означает, что соответствующие символы не могут стоять рядом ни в одной сентенциальной форме.

4.2.2. Вычисление отношений предшествования

Формальный процесс вычисления отношений предшествования для символов $X, Y \in V_T \cup V_N$ заданной КС-грамматики можно представить такой последовательностью действий (в описании действий строки $\alpha, \beta \in (V_T \cup V_N)^*, A \in V_N$):

- 1. Определить для каждого нетерминала X грамматики множество $L(X) = \{Y \mid X \stackrel{\pm}{\Rightarrow} Y\alpha \}$, т. е. множество символов грамматики (как терминалов, так и нетерминалов), с которых могут начинаться строки, выводимые из нетерминала X. Для этого необходимо построить отношение <LEFT>, определяемое следующим образом: X <LEFT> Y, если в грамматике существует продукция вида $X \to Y\beta$. Затем вычислить отношение <LEFT> как транзитивное замыкание отношения <LEFT>. Тогда L(X) есть множество символов Y, для которых выполняется отношение X <LEFT> Y.
- 2. Вычислить отношение <LEFT $>^*$ как рефлексивно-транзитивное замыкание отношения <LEFT>. Очевидно, что отношение <LEFT $>^*$ легко вычисляется по отношению <LEFT $>^+$, поскольку имеет место соотношение <LEFT $>^*$ = <LEFT $>^+$ \cup I, где I отношение тождественности. Отношение <LEFT $>^*$ понадобится для вычисления отношения >.

- 3. Определить для каждого нетерминала X грамматики множество $R(X) = \{Y \mid X \Rightarrow \alpha Y\}$, т. е. множество символов грамматики, являющихся крайними справа в строках, выводимых из нетерминала X. Для этого необходимо построить отношение <RIGHT>, определяемое следующим образом: Y <RIGHT> X, если в грамматике существует продукция вида $X \to \beta Y$. Затем вычислить отношение <RIGHT $>^+$ как транзитивное замыкание отношения <RIGHT>. Тогда R(X) есть множество символов Y, для которых выполняется отношение Y <RIGHT $>^+ X$.
- 4. Построить для всех символов грамматики отношение \doteq по его определению, т. е. $X \doteq Y$, если в грамматике существует продукция вида $A \to \alpha XY\beta$.
- 5. Вычислить отношение <. Из его формального определения следует, что X < Y, если в грамматике имеется продукция вида $A \to \alpha XB\beta$, где $B \in V_N$, и $Y \in L(B)$. Таким образом, отношение < можно вычислить как произведение отношений \doteq и <LEFT> $^+$, т. е. $(<) = (\doteq)$ (<LEFT> $^+)$.
- 6. Вычислить отношение >. Из его формального определения следует, что X>Y (напомним, что отношение определено только для $Y \in V_T$), если существует продукция
 - а) вида $A \to \alpha B Y \beta$, где $B \in V_N$, $Y \in V_T$, и $X \in R(B)$;
- б) вида $A \to \alpha BZ\beta$, где $B, Z \in V_N$, и $X \in R(B)$, $Y \in L_T(Z)$, где $L_T(Z) \subseteq L(Z)$ подмножество терминалов множества L(Z).

Таким образом, (>) = (<RIGHT $>^+$) (\doteq) (<LEFT $>^*$). Поскольку Y может быть только терминалом, при вычислении произведения отношений следует рассматривать только те отношения X <LEFT $>^* Y$, где $Y \in V_T$.

7. Построить матрицу предшествования, объединив матрицы отношений $\dot{=}$, < и > в одну и заменив единицы на соответствующие обозначения ($\dot{=}$, <, >) отношений.

Пример процесса вычисления отношений предшествования для грамматики с продукциями $S \to AB$

, , , , ,

 $A \rightarrow aA \mid a$

 $B \rightarrow bB \mid b$

представлен на рис. 4.3.

< LEFT >	$ \begin{array}{c c} < \text{LEFT} >^+ \\ \hline S \mid A \mid B \mid a \mid b \\ \hline S \mid 1 \mid 1 \mid \\ \hline A \mid \qquad $	$<$ LEFT $>^*$ $ S A B a b $ $ S 1 1 1 $ $ A 1 1 $ $ B 1 1 1 $ $ B 1 1 1 $ $ B 1 1 1 $ $ B 1 1 1 $	$S \to AB$ $A \to aA \mid a$ $B \to bB \mid b$
< RIGHT >		$ \begin{array}{c cccc} & & & & & & \\ \hline S & A & B & a & b \\ \hline S & & & & & \\ \hline A & & & 1 & & \\ \hline B & & & & & \\ \hline a & & 1 & & \\ \hline b & & & 1 & & \\ \hline \end{array} $	
S A B a b	$ \begin{array}{c cccc} & S & A & B & a & b \\ \hline S & & & & & \\ \hline A & & & & & \\ \hline B & & & & & \\ \hline a & & & & & \\ b & & & & & \\ \hline \end{array} $	Матрица предшествования $\begin{array}{c cccc} & S & A & B & a & b \\ \hline S & & & & & \\ \hline S & & & & & \\ \hline A & & & \doteq & & < > \\ \hline B & & & & \\ \hline a & & \doteq & & < & > \\ \hline b & & & \doteq & < & \\ \hline \end{array}$	

Рис. 4.3. Процесс вычисления отношений предшествования

Из отношений <LEFT $>^+$ и <RIGHT $>^+$ следует, что

$$L(S) = \{A, a\}, L(A) = \{a\}, L(B) = \{b\},\$$

$$R(S) = \{B, b\}, R(A) = \{A, a\}, R(B) = \{B, b\}.$$

Грамматика не является грамматикой простого предшествования, поскольку она не удовлетворяет третьему условию, требующему, чтобы любые два символа грамматики были связаны одним и тем же отношением предшествования. В нашем случае одновременно выполняются A < b и A > b. Действительно A < b, так как имеется продукция $S \to AB$ и $b \in L(B)$, т. е. $B \stackrel{\pm}{\Rightarrow} b$, а A > b, так как существует продукция $S \to AB$, такая, что $A \in R(A)$ и $b \in L(B)$, т. е. $A \stackrel{\pm}{\Rightarrow} aA$ и $B \stackrel{*}{\Rightarrow} b$.

Более кратко для вычисления вручную (пусть имеется продукция вида $A \to \alpha XY\beta$):

- 1) $X \doteq Y$ для любых символов (терминалов и нетерминалов),
- 2) если $Y \in V_N$, то X связано отношением < со всеми элементами из L(Y),
- 3) если $X \in V_N$, то
 - а) если $Y \in V_T$, то все элементы из R(X) связаны отношением > с элементом Y,
 - б) если $Y \in V_N$, то все элементы из R(X) связаны отношением > со всеми терминалами из L(Y).